

ATW and the Advanced Fuel Cycle Initiative

Dr. Denis E. Beller
University Programs Leader
Los Alamos National Laboratory

LA-UR-02-6772 Approved for public release; distribution is unlimited.

Through the AAA-AFC Program, the U.S. has joined international efforts

Partitioning & Transmutation along with advanced nuclear fuel cycles

Genesis of the ATW-AAA-AFC Project

- **¥ LANL ATW LDRD (~\$10 M FY90-98)**
 - —molten salt ATW → Pb-Bi-cooled ATW
- ¥ DOE-EM ATW Roadmap (\$4.5 M FY99)
- ¥ DOE-NE ATW R&D Project (\$9 M FY00)
- ¥ NE ATW + DP APT → AAA
 (\$34 M FY01→ \$50 M FY02)
- ¥ AAA → AFCI (\$78 M FY03)

Systems modeling projects future U.S. inventory of used fuel

¥ ATW Roadmap: 2030s → 87,000 tn

¥ Life extension: 2050s → 144,000 tn

¥ NEI Vision 2020:

new plants → new waste

—2030s: 120,000 tn

2050s: more than 180,000 tn

What will we do with it?

Options for disposal of nuclear waste

¥ once-through fuel cycle, or

¥reduce, reuse, and recycle

- —MOX-fueled LWRs or HTGCRs
- -Fast reactors (includes breeders)
- -Accelerator-driven transmutation

Today s option: once-through fuel cycle

Direct disposal faces many challenges

- ¥ Political opposition
- ¥ Public acceptance
- ¥ Licensing and regulatory concerns
- ¥ Uncertainty in projecting out for hundreds of thousands of years

Transmutation of waste offers potential solutions to these challenges

Most long-term hazards are due to 1.1% of the used nuclear fuel

0.1% minor actinides

0.9% plutonium

3% stable or short-lived fission products

0.3% cesium and strontium

0.1% iodine and technetium

uranium

plutonium

minor actinides

Stable or short-lived

cesium & strontium

lodine

■ Technetium

95.6% is uranium

Advanced Accelerator Applications

ATW can reduce projected doses, but defense waste reduces ATW impact

Impact on dose is reduced to about a factor of 10

Figure 5.3. Individual Dose Rate (Adult, 20 km Distance, All Exposure Pathways) Comparison for the First Million Years after Repository Closure

Transmutation means Nuclear Transformation

- **Ye changes the contents of the nucleus** (protons and/or neutrons)
- ¥ natural (decay) or driven
- **¥ since before World War II it s Not Hard!**

Turn lead into gold? Just need a source of neutrons

Pu and MA are fissioned, excess neutrons convert I and Tc to stable isotopes

Initial Materials

Advanced Accelerator Applications

The challenge is to transmute effectively:

thorough, clean, safe, and cost-effective

¥ near 100% conversion

¥ low losses

¥ accident free

¥ reduce waste toxicity and volume

¥ minimal impact to cost of the nuclear fuel cycle

The Transmutation Strategy:

- ¥ Partition used nuclear fuel
- ¥ Discard uranium and stable elements
- ¥ Form transmutation fuel from longlived radionuclides
- ¥ Transmute long-lived radionuclides into short-lived or stable isotopes
- ¥ Manage remaining short-lived wastes for just a few hundred years

ATW Technology Can Lead to Reductions of Nuclear Waste

Accelerator

Transmutation of

Waste

Byproducts:
isotopeselectricity\$ billions

TBD: reduction of waste volume and radio-toxicity

67,000 tn of U (recycle)

Less stored waste

*Significantly reduced
plutonium and other TRU

*Major reduction of longlived fission products

Repository

ATW subcritical capability adds flexibility

- ¥ Nuclear systems have always operated critical
- ¥ Subcritical capability adds flexibility
 - —Can drive systems with low fissile content or high non-fissile burden
 - operate with fuel that could make critical systems unstable
 - —compensate for large uncertainties or reactivity swings

Subcritical operation option addresses fuel cycle issues

- ¥ jump-start systems with insufficient fissile content
- ¥ support advanced fuel cycles by transmuting wastes
- ¥ close-down cycles with depleted fissile content

To do this, ATW includes three major technology elements:

- 1) Separations & Waste Forms
 - —aqueous or molten salt chemistry
 - -glass, ceramic, or metal waste forms
- 2) Accelerators
 - -linacs or cyclotrons
- 3) Subcritical Transmuters
 - -fast, metal, gas, molten salt, thermal

separations Waste forms

Separations processes are being investigated at ANL and LANL

- **¥ Aqueous: UREX**
 - —may be preferred for separation of used LWR fuel
 - —does not separate Pu from MA
- **¥ Pyro-processing**
 - —similar to IFR
 - —for used ATW fuel
- **¥ Others (FLEX,)**

Partitioning can also provide stable waste forms

- ¥ Problem isotopes are separated, then
- ¥ some are transmuted,
- ¥ while others can be combined to create long-lived, non-hazardous waste forms
 - —optimum repository performance impact
 - —combine some with massive amounts of zirconium
 - —combine some in vitrified waste

Accelerators will produce powerful beams of high-energy particles

- ¥ 600 to 1000 MeV protons
- ¥ mA of current
- ¥ product is MW of beam power
- ¥ big and expensive
- ¥ how to turn that into neutrons for spallation?

Spallation & evaporation produce neutrons

- ¥ protons strike heavy nuclei
- ¥ knocked-out particles create a cascade
- ¥ residual nuclei cool off by evaporation

Heavier target materials yield more neutrons per proton

Components for a 12-MW proton beam

RFQ 350-MHz 700-MHz Spoke Cavities Elliptical Cavities 20 mA $\beta = 0.20$ $\beta = 0.34$ $\beta = 0.50$ $\beta = 0.64$ 600 MeV MeV MeV MeV MeV

100-mA H⁺ injector including LEBT

 β = 0.125, 5-GAP, 350 MHz superconducting spoke cavity

6.7 MeV RFQ with injector rolled back

Two-cavity superconducting cryomodule isometric

Transmuters ctargets & Blankets)

ATW beam expansion and spallation target modules in ATW transmuter

For the transmuter, the major challenge is fuel development

ITTISSISIES and scenarios

Japan: Double Strata Fuel Cycle

Multi-Tier Approach Using Thermal Spectrum Power Reactors to Transmute Pu May Improve Economics, but Increases Materials Flow Complexities

Partitioning & Transmutation are evaluated versus four goals

- ¥ Reduce volume and radio-toxicity of waste
- ¥ Provide benefits to the repository program
- ¥ Increase proliferation resistance of nuclear fuel cycles
- ¥ Support nuclear infrastructure and nuclear future

Reduce toxicity of spent fuel within lifetime of man-made containers and/or barriers (a few millennia)

Reduce maximum long-term dose

¥ to future inhabitants by

- transmuting mobile elements or
- —placing into leach-resistant waste forms

Compare vs. natural background dose

Deplete content/mix of actinides in waste stream

¥ Make it less desirable/attractive than alternate sources of fissile materials

Alternate Sources?

Example: proliferation resistance for two fuel cycles

Improve prospects for nuclear energy

¥ Integrate over time & across borders

Simpler, cheaper

repositories

Near-term proliferation risk minimized

Near-term ES&H burdens manageable

The existing readiness level depends on the technology area and sub-system

AFCI mission requires optimum use of nuclear infrastructure

AFCI

People: >

Transmutation System
Proof-of-Performance
Requires Firm Base of
Expertise and Facilities

Laboratories, International, Universities, Industry

Existing Facilities:

U.S & International

New accelerator-driven test facility???

Universities are key to AFCI success

- **¥ Directed university research**
 - -FY01: UT Austin, UC Berkeley, U of Mich
 - -FY02: add NCSU, U of III, U of FL, GA Tech
- **¥ Fellowship Program**
 - —10 awarded last April
 - —10 more this year
 - —Ph.D. next year?

More Universities

- ¥ UNLV: \$4.5 M, 16 research projects, 3 new faculty, labs, ~50 students
- ¥ Idaho Accelerator Center, \$1.5 M
- **¥ AFC academic support growth**
 - _<\$0.5 M FY00
 - _~\$4 M FY01
 - ->\$7 M FY02
 - _\$10 M next year?

Potential for ten universities, \$10 M, more than 100 students

- ¥ UNLV growth
- ¥ Idaho State growth
- ¥ new earmarks?
- **¥ more AFCI Fellowships**
- **¥ Competitive University Research Proposal Program in FY02?**
- ¥ Other

Collaboration with the CEA, seven major work packages:

¥ WP 1: ADS Safety

¥ WP 2: Dedicated (Non-fertile) fuels

¥ WP 3: Target and Materials

¥ WP 4: Physics

¥ WP 5: Facilities

¥ WP 6: System Studies

¥ WP 7: Separations

Facilities to provide Proof of Principle and Proof of Performance

Approximate Time Scale:

3 to 5 years

10 to 20 years

Scaled experiments: LANSCE, TREAT, MASURCA, MTL, ATR, PHENIX, BOR60, Blue Room, Hot Cells

ADTF plus fuel fab and separations facilities

Technology Readiness Level Scale:

Analyses based on

basic principles

Component and phenomenological testing in relevant

environment LA-UR-02-6772 - #45 System and sub-system testing in Prototypic environment

Advanced Accelerator Application

Conceptual ADTF layout

Modular concept for target and subcritical multiplier

Experiment Cell

Shield

Target Assembly

Multiplier

ADTF benefits

- ¥ Essential reactor constraints can be relaxed in subcritical systems
- **¥ Both steady state and transient modes**
- ¥ Accelerator selection optimizes neutron production and proton range
- ¥ Drives 80-180 MW_{thermal} subcritical blanket
- ¥ Demonstration of integrated system

NERAC assessment of transmutation

- ¥ Phase 1 is complete
 - —Goals, exploratory R&D, systems studies, future directions
- ¥ transmutation can meet the program goals
- ¥ Multi-tier concepts will be examined

Ref: Report of the Advanced Nuclear Transmutation Technology Subcommittee of the NERAC, 15 April 2002

What are next steps? (NERAC ANTT 2002 cont d)

¥ Phase 2

- Focused R&D and systems studies
- **─5 to 6 years, ~\$500 M**

¥ Phase 3

- —Scalable demonstration plant
- —10 to 15 years, \$4 to 7 billion
- ¥ International collaboration
 - —Already saved ~\$100 M

Why Invest in the AFCI Program?

- ¥ Public support
- ¥ Good resource stewardship
- ¥ Augments current waste management strategy
- ¥ Brings U.S. back to forefront in nuclear science and technology
- ¥ Spin-off technologies, e.g. medical isotopes, may be as significant as the transmutation of waste

Cons (why not invest?)

- ¥ Other transmutation concepts exist
 - —difficult to implement, less flexible, and narrower in scope
- ¥ Uncertainty--success of new technologies always entails uncertainty
- ¥ Proliferation?
 - —(R&D should enlighten us)
- ¥ Cost--worthwhile R&D involves significant investment

Too costly?

- **Yes a serior of the answer of the critics, John Zink,** *Power Engineering*, 1/2002
- ¥ transmutation could remove one public objection
- ¥ technically feasible
- ¥ could become technically practical
- ¥ it all comes down to economics
- **¥ may become cost-effective**

The AFCI Program will provide a sound foundation to ...

- **¥ Assess options for transmutation**
- ¥ Develop a test bed for nuclear R&D
- ¥ Develop isotope production technology
- ¥ Strengthen nuclear infrastructure
- ¥ Improve prospects of a nuclear future

